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1. Data pre-processing W =

o Mean subtraction (e.g. AlexNet: 32 x 32 x 3, VGG: 1 x 1 x 3)
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1. Data pre-processing

o Mean subtraction (e.g. AlexNet: 32 x 32 x 3, VGG: 1 x 1 x 3)

o Mean subtraction and division by standard deviation per channel (e.g.
ResNet)

o PCA or whitening are not common
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2. Weight Initialization

o What if all the parameters are
initialized to zero?

i/p layer hidden layer o/p layer
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2. Weight Initialization

o What if all the parameters are
initialized to zero?

o Or, a different constant?

o Leads to a failure mode (often
known as the ‘symmetry’
problem)

i/p layer hidden layer o/p layer
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2. Weight Initialization M =

©

What if all the parameters are
initialized to zero?

o Or, a different constant?

o Leads to a failure mode (often
known as the ‘symmetry’
problem)

o Hence, we need different

, values as weights!
i/p layer hidden layer o/p layer
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2. Weight Initialization

i/p layer hidden layer o/p layer
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o Is it good enough to have
different parameters?

6
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2. Weight Initialization

o Is it good enough to have
different parameters?

o Large weights — exploding
gradients

i/p layer hidden layer o/p layer
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2. Weight Initialization

o Is it good enough to have
different parameters?

o Large weights — exploding
gradients

o Small ones — vanishing
gradients

i/p layer hidden layer o/p layer
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2. Weight Initialization

o Is it good enough to have
different parameters?

o Large weights — exploding
gradients

o Small ones — vanishing
gradients

o Different weights — different

o er alloms e o/p range of the neurons

Dr. Konda Reddy Mopuri dl - 09 / Training DNNs Il 4



2. Weight Initialization _ e

o How about randomly initializing?
W = 0.001 * np.random.randn(d;,d;_1)

Figure credits: Dr Justin Johnson, U Michigan
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2. Weight Initialization o =

o How about randomly initializing?
W = 0.001 * np.random.randn(d;,d;_1)

o Okay for the shallow nets

o However, the dynamic range of the activations at later layers goes on
shrinking — activations tend to zero at deeper layers (e.g. 6 layer
MLP with a tanh nonlinearity)

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=0.00 mean=0.00 mean=-0.00 mean=-0.00 mean=0.00
std=0.49 std=0.29 std=0.18 std=0.11 std=0.07 std=0.05
-1 ° 1 4 [} 1 A [} 1 4 [ 1 A [} 1 A o 1

Figure credits: Dr Justin Johnson, U Michigan
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2. Weight Initialization o =

o How about randomly initializing?
W = 0.001 * np.random.randn(d;,d;_1)

o Okay for the shallow nets

o However, the dynamic range of the activations at later layers goes on
shrinking — activations tend to zero at deeper layers (e.g. 6 layer
MLP with a tanh nonlinearity)

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=0.00 mean=0.00 mean=-0.00 mean=-0.00 mean=0.00
std=0.49 std=0.29 std=0.18 std=0.11 std=0.07 std=0.05
-1 ° 1 4 [} 1 A [} 1 4 [ 1 A [} 1 A o 1

o All zero gradients, no learning!

Figure credits: Dr Justin Johnson, U Michigan
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2a. Xavier Initialization “ Ak

o W = np.random.randn(d;,d;_1)/np.sqrt(d;_1)

Figure credits: Dr Justin Johnson, U Michigan
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2a. Xavier Initialization |||

o W = np.random.randn(d;,d;_1)/np.sqrt(d;_1)

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=-0.00 mean=0.00 mean=0.00 mean=0.00 mean=-0.00
std=0.63 std=0.49 std=0.41 std=0.36 std=0.32 std=0.30

A AAA

Figure credits: Dr Justin Johnson, U Michigan
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2a. Xavier Initialization

o We prefer the o/p to have similar variance as the input
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2a. Xavier Initialization

o We prefer the o/p to have similar variance as the input

. . . di—
o Consider a single layer, y = Wx, i.e. y; = Ejl:f Tj - w;j
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o We prefer the o/p to have similar variance as the input
o Consider a single layer, y = Wx, i.e. y; = E?l:_f Tj - w;j

o var(y;) = di—1 - var(x; - w;) (Assuming w; and xz; are i.i.d)
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2a. Xavier Initialization

We prefer the o/p to have similar variance as the input

©

. : . di_
Consider a single layer, y = Wx, ie. y; = Zjl:f xj - wj

©

©

var(y;) = dj—1 - var(x; - w;) (Assuming w; and x; are i.i.d)

©

var(y;) = dj—1 - <E(SU12) - B(w;?) — E(x;)?- E(wi)Q) (Assuming x

and w are independent)

Dr. Konda Reddy Mopuri dl - 09 / Training DNNs Il 7



26bab 0888 dend H0% PaTenl
Indian &

ian Institute of Technology Hyderabad

2a. Xavier Initialization

o We prefer the o/p to have similar variance as the input

o Consider a single layer, y = Wx, i.e. y; = E?l:_f Tj - w;j

o var(y;) = di—1 - var(x; - w;) (Assuming w; and xz; are i.i.d)

o var(y;) = dj—1 - <E(:L’12) -E(w?) — BE(x;)? - E(wi)Q) (Assuming x
and w are independent)

o var(y;) = dj—1- var(x;)- var(w;) Assuming (z; and w; are zero-mean)
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2a. Xavier Initialization

o We prefer the o/p to have similar variance as the input

o Consider a single layer, y = Wx, i.e. y; = E?l:_f Tj - w;j

o var(y;) = di—1 - var(x; - w;) (Assuming w; and xz; are i.i.d)

o var(y;) = dj—1 - <E(:L’12) -E(w?) — BE(x;)? - E(wi)Q) (Assuming x
and w are independent)

o var(y;) = dj—1- var(x;)- var(w;) Assuming (z; and w; are zero-mean)

o — var(w;) = gz
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2b. Weight Initialization with ReLU acfivations-

o Kaiming He or MSRA initialization

Figure credits: Dr Justin Johnson
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2b. Weight Initialization with ReLU acfivations-

o Kaiming He or MSRA initialization
o std=sqrt(2/d;_1)

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.57 mean=0.57 mean=0.56 mean=0.55 mean=0.55 mean=0.55
std=0.83 std=0.83 std=0.83 std=0.81 std=0.81 std=0.81

Figure credits: Dr Justin Johnson
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2c. Weight Initialization: Residual NetWorks™

[relu
H(’x) F(x) +x

Additive
“shortcut”

Tivelu F(x) relu

f
X

“Plain” block

X
Residual Block

Figure credits: Dr. Justin Johnson
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o MSRA initialization:
Var(F(x)+x) > Var(x)

- 09 / Training DNNs I



#68ab M03BS 2 $03 s

@
2c. Weight Initialization: Residual NetWorks™

relu

H(’x) F(x) +x

Trelu F(x) Trelu Additive

“shortcut”

f

X X

“Plain” block Residual Block

Figure credits: Dr. Justin Johnson

Dr. Konda Reddy Mopuri

o MSRA initialization:
Var(F(x)+x) > Var(x)

o Variance grows!
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2c. Weight Initialization: Residual NetWorks™

[relu
H(’x) F(x) +x

F(x) Trelu Additive

| relu P ’
‘shortcut

f
X X

“Plain” block Residual Block

Figure credits: Dr. Justin Johnson

Dr. Konda Reddy Mopuri

dl - 09 / Training DNNs Il

o MSRA initialization:

Var(F(x)+x) > Var(x)

o Variance grows!

o Solution: Initialize the first

Conv layer with MSRA, and
the second one with zero —
Var(x+F(x)) = Var(x)



26bab 0888 dend H0% PaTenl
Indian Institute of Technology Hyderabad

3. Deep Regularization

@ Most of the regularization techniques trade increased bias for
decreased variance
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3. Deep Regularization “ P

@ Most of the regularization techniques trade increased bias for
decreased variance

@ It has to be profitable!
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3. Deep Regularization J

@ Most often the best-fitting model is a large model that has been
appropriately regularized
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3. Deep Regularization J

(]

Parameter Norm penalties (l2, 11, etc.)

©

Dataset Augmentation

Noise Robustness

©

©

Semi-Supervised Learning

©

Multi-Task Learning (Parameter sharing)

©

Sparse Representation

©

Dropout

o etc.
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3a. Parameter Norm Penalties "

@ For neural networks, typically only the weights of the affine
transformations are regularized leaving the biases unregularized
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3a. Parameter Norm Penalties

@ For neural networks, typically only the weights of the affine
transformations are regularized leaving the biases unregularized

@ Bias controls only a single variable as opposed to weight which
connects two
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3a. Parameter Norm Penalties

@ For neural networks, typically only the weights of the affine
transformations are regularized leaving the biases unregularized

@ Bias controls only a single variable as opposed to weight which
connects two
@ Regularizing biases may induce underfitting
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3a. Parameter Norm Penalties “

@ L, parameter regularization: J = wTw + J(w; X, y)
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3a. Parameter Norm Penalties o =

@ L, parameter regularization: J = Swlw + J(w; X, y)
@ L, regularization: J = a|w|; + J(w; X, y)
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3a. Parameter Norm Penalties

@ L, parameter regularization: J = Swlw + J(w; X, y)
@ L, regularization: J = a|w|; + J(w; X, y)

@ Norm penalties induce different desired behaviors based on the exact
penalty imposed
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3b. Dataset Augmentation J

@ Bestway to make ML model generalize better is to train with more
data
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3b. Dataset Augmentation J

@ Bestway to make ML model generalize better is to train with more
data

@ In practice training data is limited

@ Create fake data and add it to the training data, called Dataset
augmentation
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3b. Dataset Augmentation J

@ Easier for classification
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3b. Dataset Augmentation J

@ Easier for classification

@ Difficult for density estimation task (unless we have solved the
estimation problem)
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3b. Dataset Augmentation J

@ Has been particularly effective for specific classification problems such
as object recognition
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3b. Dataset Augmentation

@ Has been particularly effective for specific classification problems such
as object recognition

@ Operations such as translation by few pixels, rotating slightly, adding
mild noise, etc. greatly improve generalization
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3b. Dataset Augmentation J

@ Has been particularly effective for specific classification problems such
as object recognition

@ Operations such as translation by few pixels, rotating slightly, adding
mild noise, etc. greatly improve generalization

@ Hand-designed augmentations in some domains can result in dramatic
improvements
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3b. Dataset Augmentation J

@ Has been particularly effective for specific classification problems such
as object recognition

@ Operations such as translation by few pixels, rotating slightly, adding
mild noise, etc. greatly improve generalization

@ Hand-designed augmentations in some domains can result in dramatic
improvements

@ Should restrict to label preserving transformations
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3c. Multi-Task Learning

@ Improves generalization by collecting samples arising out of multiple
taks
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3c. Multi-Task Learning

@ Improves generalization by collecting samples arising out of multiple
taks

@ Similar to additional data samples, multi-task samples also put more
pressure on the parameters of the shared layers to be ‘better’
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3c. Multi-Task Learning

@ Improves generalization by collecting samples arising out of multiple

taks
@ Similar to additional data samples, multi-task samples also put more
pressure on the parameters of the shared layers to be better

)
e ) (&

DO4O,
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3d. Dropout

@ Key ideas and contributions in DL have been to engineer architectures
for making them easier to train
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@ Key ideas and contributions in DL have been to engineer architectures
for making them easier to train

@ Dropout is one such (‘deep’) regularization technique (Srivastava et
al. 2014)
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3d. Dropout

@ During the forward pass, some of the units are randomly ‘zeroed’ out
(neurons are removed)

e

(a) Standard Neural Net (b) After applying

ropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

Figure from Srivastava et al. 2014
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3d. Dropout
@ During the forward pass, some of the units are randomly ‘zeroed’ out
(neurons are removed)

@ Dropped units are randomly selected in each layer independent of
others

e

(a) Standard Neural Net (b) After applying

ropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

Figure from Srivastava et al. 2014
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3d. Dropout

@ During the forward pass, some of the units are randomly ‘zeroed’ out
(neurons are removed)

@ Dropped units are randomly selected in each layer independent of
others

@ Resulting network has a different architecture

R
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(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

Figure from Srivastava et al. 2014
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3d. Dropout
@ During the forward pass, some of the units are randomly ‘zeroed’ out
(neurons are removed)

@ Dropped units are randomly selected in each layer independent of
others

@ Resulting network has a different architecture

@ Backpropagation happens through the remaining activations

7
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e

ropout.

(a) Standard Neural Net (b) After applying

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

Figure from Srivastava et al. 2014
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3d. Dropout: Interpretation "

@ Improves independence between the units (prevents co-adaptation of
the units in the network)
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3d. Dropout: Interpretation

@ Improves independence between the units (prevents co-adaptation of
the units in the network)

@ Distributes the representation among all the units (forces the network
to learn redundancy)
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@ We will decide on which units/layers to use dropout, and with what
probability p units are dropped.
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@ We will decide on which units/layers to use dropout, and with what
probability p units are dropped.

@ For each sample, as many Bernoulli variables as units are sampled
independently for dropping the units.
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3d. Dropout: Another Interpretation L

@ Results in a large ensemble of networks (with shared parameters)
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3d. Dropout: Another Interpretation J

@ Results in a large ensemble of networks (with shared parameters)

@ Every possible binary mask results in a member of the ensemble
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@
3d. Dropout: Another Interpretation L

@ Results in a large ensemble of networks (with shared parameters)
@ Every possible binary mask results in a member of the ensemble
@ E.g. a dense layer with 10 units has 2! masks!
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3d. Dropout: test time J

@ Which model from the ensemble to use?
y = f(z,w,m) (m is the chosen binary mask)
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3d. Dropout: test time J

@ Which model from the ensemble to use?
y = f(z,w,m) (m is the chosen binary mask)

@ How about taking the opinion of all the experts? — ‘average out’ and
make the o/p deterministic
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3d. Dropout: test time

@ Which model from the ensemble to use?
y = f(z,w,m) (m is the chosen binary mask)

@ How about taking the opinion of all the experts? — ‘average out’ and
make the o/p deterministic

@ y=E,[f(z,w,m)] =>,,p(m)- f(x,w,m)

Dr. Konda Reddy Mopuri dl - 09 / Training DNNs I 25



26bab 0888 dend H0% PaTenl
Indian Institute of Technology Hyderabad

3d. Dropout: test time

@ Which model from the ensemble to use?
y = f(z,w,m) (m is the chosen binary mask)

@ How about taking the opinion of all the experts? — ‘average out’ and
make the o/p deterministic

@ Leads to dropping no unit but multiply the activations with the
probability of retaining

Dr. Konda Reddy Mopuri dl - 09 / Training DNNs I 25
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3d. Dropout

@ Which layers to regularize with the Dropout?
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@ Which layers to regularize with the Dropout?

@ More parameters are the dense layers — usually applied there
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@ Which layers to regularize with the Dropout?
@ More parameters are the dense layers — usually applied there
@ Not much used after ResNets!
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@ Gradient Descent converges faster with feature scaling (z L;“)
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3e. Batch Normalization (BN) i

@ Gradient Descent converges faster with feature scaling (z %)

@ Batch Normalization (BN) is a normalization method for intermediate
layers of NNs — performs whitening to the intermediate layer
activations
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Input: Values of z over a mini-batch: B = {z1. m }:
Parameters to be learned: v, 3
Output: {y; = BN, g(z;)}

m

1 55
B — — E a5 // mini-batch mean
m
i=1

. Lo ‘ N A
o}« = > (@i — ps)? // mini-batch variance
p

- x; B
Ts & —F——

// normalize
Vogte
yi ¢ 7Z; + B = BN, g(z;) // scale and shift

~ and (3 are learn-able parameters

Dr. Konda Reddy Mopuri
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@ Originally introduced to handle the internal covariate shift (ICS)

Dr. Konda Reddy Mopuri dl - 09 / Training DNNs I 29



26bab 0888 dend H0% PaTenl
Indian Institute of Technology Hyderabad

3e. Batch Normalization (BN)

@ Originally introduced to handle the internal covariate shift (ICS)

@ BN makes the activation of each neuron to be Gaussian distributed
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3e. Batch Normalization (BN) i

@ Originally introduced to handle the internal covariate shift (ICS)
@ BN makes the activation of each neuron to be Gaussian distributed

@ ICS is undesirable because the layers need to adapt to the new
distribution of activations

@ With BN, it is reduced to new pair of parameters, but the distribution
remains Gaussian
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3e. Batch Normalization (BN) i

@ Mitigates interdependency between hidden layers during training

™ : ' T
Input B (a‘\ — l\/ b ) — | ¢ — | d-\, —_ | e\,l e Output
e Nl N N W
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. 8o Modas dens
3e. Batch Normalization (BN) | =

@ Mitigates interdependency between hidden layers during training

: N Y
Input »(‘\—ulb:-—>' — (d ] — | e Output
npx Nl ‘\i) N \i,/’l s

@ 9(a) = (b) - (c) - A(d) - A(e)
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. 8o Modas dens
3e. Batch Normalization (BN) | =

@ Mitigates interdependency between hidden layers during training

R N N . TR
Input B (a\ — l\/ b ) — | c) — | d-\, —_ | e\J e Output
N N N N W

@ 9(a) =0(b)-9(c)-0(d) - 9(e)
@ if we want to adjust the input distribution of a specific hidden unit,
we need to consider the whole sequence of layers (w/o BN)
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3e. Batch Normalization (BN) W =i

@ Mitigates interdependency between hidden layers during training

R N N . TR
Input B (a\ — l\/ b ) — | c) — | d-\, —_ | e\J e Output
N N N N W

@ 9(a) =0(b)-9(c)-0(d) - 9(e)
@ if we want to adjust the input distribution of a specific hidden unit,
we need to consider the whole sequence of layers (w/o BN)

@ BN acts like a valve which holds back the flow, and allows its
regulation using 8 and ~y

Dr. Konda Reddy Mopuri dl - 09 / Training DNNs I 30



. 8o Modas dens
3e. Batch Normalization (BN) | =

@ Reduces training time (less ICS)
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. 8o Modas dens
3e. Batch Normalization (BN) | =

@ Reduces training time (less ICS)

@ Reduces the demand for additional regularizers (Batch statistics)
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. 8o Modas dens
3e. Batch Normalization (BN) | =

@ Reduces training time (less ICS)
@ Reduces the demand for additional regularizers (Batch statistics)

@ Allows higher learning rates (less danger of vanishing/exploding
gradients)

31
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Regularization: General idea “ Rt e

@ Make all the assumptions explicit — appropriate inductive biases
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